
1.  Introduction
The pyrocumulonimbus (pyroCb) induced by extreme wildfires can inject many smoke particles into the strat-
osphere (Fromm et al., 2005, 2010; Peterson et al., 2018). The stratospheric lifetime of smoke particles ranges 
from months to years (D’Angelo et al., 2022; Das et al., 2021; Kremser et al., 2016; Yu et al., 2019) depending on 
the season and latitude of injection. The upwelling tropical air prolongs the stratospheric lifetime of the injected 
aerosols. In contrast, particles injected at the mid-high latitudes are subject to more rapid removal (Deshler, 2008; 
Trickl et al., 2013). This long-lasting smoke can perturb stratospheric chemistry and the aerosol budget. The 
smoke particles primarily consist of organic matter (OM), with minor black carbon (BC). The estimated mass 
fraction of BC is about 2%–3% calculated by constraining model simulations with satellite observations (Yu 
et al., 2019, 2021). A similar BC mass fraction was observed by in situ measurements during the Atmospheric 
Tomography Mission (Ditas et al., 2018; Froyd et al., 2019). Since the frequency of pyroCb events may increase 
in a warming climate (Di Virgilio et al., 2019; Peterson et al., 2021), a comprehensive investigation of the radia-
tive effects of pyroCb events is needed in climate evaluation and prediction.

Two record-breaking pyroCb events in the last decade injected large amounts of aerosols into the stratosphere. 
The 2017 Pacific Northwest Event (PNE) injected about 0.3 Tg (0.1–0.35 Tg) smoke (S. M. Khaykin et al., 2018; 
Peterson et  al.,  2018; Torres et  al.,  2020; Yu et  al.,  2019) with plumes lofting from 12 to 23 km (Ansmann 
et al., 2018; Baars et al., 2019). The 2019–2020 Australian New Year wildfire event (ANY) injected about 3 times 
the mass (0.3–2.1 Tg) of the 2017 PNE (Hirsch & Koren, 2021; Kablick et al., 2020; S. Khaykin et al., 2020; 
Peterson et al., 2021; Yu et al., 2021). This smoke mass is comparable to the injection of SO2 from a moderate 
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Plain Language Summary  Extreme wildfires can directly inject a large amount of smoke 
into the stratosphere. Two recent record-breaking wildfire events influenced stratospheric chemistry and 
the global climate. However, the climate effects of these wildfires remain relatively unclear comparing to 
those of well-known volcanic eruptions. We used a climate model to simulate the global effective radiative 
effects. Results show that the wildfire smokes significantly cooled the Earth system, with −0.04 ± 0.02 and 
−0.17 ± 0.02 W/m 2 for each fire. Longwave radiation from the stratosphere warmed by the wildfire smoke was 
comparable to shortwave radiative forcing. We further compared the climate effects of smoke to volcanic sulfate 
with the same aerosol mass injected. We found that wildfire smoke can cool the atmosphere 70%–270% more 
effectively than sulfate aerosol.
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volcanic eruption (Peterson et al., 2018, 2021). Recent observational and modeling studies have found that the 
2019–2020 ANY event warmed the stratosphere by 1–2 K (Rieger et al., 2021; Yu et al., 2021) and depleted the 
stratospheric ozone by a few percent through heterogeneous chemistry (Bernath et al., 2022; Santee et al., 2022; 
Solomon et al., 2022; Yu et al., 2021).

Radiative forcing (RF) denotes an imbalance of the radiation budget induced by various forcing agents including 
aerosols and trace gases. Quantification of RF can evaluate the climate impacts of stratospheric injections of 
aerosols including volcanic eruptions and pyroCb events (Bellouin et al., 2020). The RF of volcanic eruptions 
is relatively well quantified. For example, the 1991 Pinatubo eruption with 10–18 Tg SO2 (Mills et al., 2016) 
induced a global peak RF of −3.2 W/m 2 and an annual-mean RF of more than −2.09 W/m 2 in 1992 (G. A. 
Schmidt et al., 2014; A. Schmidt et al., 2018). The decadal average RF of small to moderate volcanic eruptions 
is estimated to be between −0.1 and −0.2 W/m 2 (Brühl et al., 2015; Ridley et al., 2014; A. Schmidt et al., 2018; 
Solomon et al., 2011). Volcanic sulfate aerosols cool the Earth by scattering sunlight back to space with minor 
absorption of terrestrial longwave radiation. However, the wildfire smoke particles not only scatter sunlight but 
also absorb sunlight and heat the stratosphere in the shortwave. Furthermore, the longwave radiation from the 
warmed stratosphere complicates their total RF estimation. In general, the RF of pyroCb events remains less 
understood compared to volcanic emissions (Peterson et al., 2018). For the 2017 PNE, Christian et al. (2019) 
modeled a slightly positive global instantaneous RF of about 0.02 W/m 2 at the top of the atmosphere (TOA). Das 
et al. (2021) reported global all-sky RF at the TOA and surface of −0.03 ± 0.01 and −0.12 ± 0.03 W/m 2, respec-
tively. For the 2019–2020 ANY, Yu et al. (2021) suggested a negative global clear-sky effective RF (ERF) of 
−0.03 W/m 2 at the TOA and −0.32 W/m 2 at the surface. Using measured aerosol optical properties, S. Khaykin 
et al. (2020) computed peak shortwave RF values of −0.31 ± 0.09 W/m 2 at the TOA and −0.98 ± 0.17 W/m 2 at 
the surface in February 2020. Similarly, Sellitto et al. (2022) estimated −0.35 ± 0.21 and −0.94 ± 0.26 W/m 2 at 
the TOA and surface in February. Based on satellite measurements, Hirsch and Koren (2021) estimated a cooling 
shortwave RF at TOA of −1.0 ± 0.6 W/m 2 in January, which decayed to −0.5 ± 0.4 W/m 2 in June. Nevertheless, 
the longwave RF of the smoke-warmed stratosphere has not been well quantified.

In this study, we quantified the climate-relevant ERF of the two largest pyroCb events (PNE and ANY) at the 
TOA, 200 hPa, and the surface in the last decade using the Community Earth System Model (CESM). We further 
compared the simulated ERF of smoke and sulfate aerosols with the same mass of materials injected. We show 
that the wildfire smoke can cool the atmosphere 70%–270% more effectively than mass-equivalent sulfate in the 
model.

2.  Methods
2.1.  CESM-MAM3

The CESM1.2.2 model coupled with an atmospheric component of the Community Atmosphere Model version 5 
(CAM5) was used for our simulation (Lamarque et al., 2012). The interactive aerosol chemistry was represented 
by a Modal Aerosol Module (Liu et al., 2012) with three lognormal modes (MAM3). Using the prognostic aerosol 
optical properties from MAM3, the Rapid Radiative Transfer Model for Global Climate Models (RRTMG) was 
applied to simulate the radiative flux for both shortwave and longwave (Iacono et al., 2008; Mlawer et al., 1997). 
Detailed model configurations are provided in Text S1 in Supporting Information S1.

We conducted three sets of ensemble experiments to simulate pyroCb smoke and volcanic sulfate. Each set 
contained 60-member ensembles (free-run) from MAM3 (Text S1 in Supporting Information S1). (a) The control 
experiment without stratospheric pyroCb smoke or volcanic sulfate; (b) The pyroCb experiment with the smoke 
inventory listed in Table S1 in Supporting Information S1; (c) The pyroCb-equivalent volcanic experiment that 
injected the same mass of sulfate as the smoke mass injected in set (b). In the volcanic experiment, we injected 
sulfate at 18 km in the stratosphere. To validate these results, we conducted extra experiments with 20 ensembles 
from the Community Aerosol and Radiation Model for Atmospheres (CARMA) (Yu et al., 2021).

2.2.  Satellite Observations

We used aerosol extinction coefficient products from two satellites to validate our model simulations, that is, 
the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) (Loughman et al., 2018) and the Stratospheric 
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Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) (Chen et al., 2020). Details 
are provided in Text S2 in Supporting Information S1.

3.  Results and Discussion
3.1.  Smoke Distribution

As shown in Figure 1, the smoke plume ascended from 12 to 15 km to over 20 km within 1–2 months and slowly 
descended in the following months. The observed and modeled mid-latitude stratospheric aerosol optical depth 
(sAOD) from 12 to 30 km was enhanced by a factor of 1 and 3.5 by the 2017 PNE and 2019–2020 ANY events, 
respectively. The sAOD enhancements remained in the stratosphere for >6 months for PNE and up to 1 year 
for ANY. The observed mid-latitude aerosol extinction coefficients at 12.5, 15.5, 18.5, and 21.5 km are shown 
in Figure S1 in Supporting Information S1. Both observations and model simulations suggest that the aerosol 
extinction coefficients at 21.5 km peaked about 1 month later than those at 15.5 km. The delayed peak at the 
higher altitude is associated with the rising plume.

3.2.  Stratospheric Warming

Satellite observations (Bernath et al., 2022; Rieger et al., 2021; Santee et al., 2022) showed that the 2019–2020 
ANY smoke warmed the lower stratosphere of the mid-latitudes in the Southern Hemisphere (SH) by 1–2 K for 
6 months and peaked at about 2.5 K in February 2020 (Santee et al., 2022) (Figure S2 in Supporting Informa-
tion S1). Model simulations suggest that the stratospheric warming is mostly due to the shortwave absorption 
of smoke (Yu et al., 2021). Here we simulated the global mean stratospheric temperature anomalies from 10 to 
30 km between 2017 and 2021 (Figure 2). Simulated stratospheric warming due to ANY was over 1 K for the 
global mean temperature (Figure 2) and over 1.5 K averaged in the SH mid-latitudes (Figure S2 in Supporting 
Information S1). Simulated global mean temperature anomalies greater than 0.4 K persisted throughout 2021. 
As the plume rose in the first 3 months, the simulated maximum height of the smoke rose from 12 to 23 km. 

Figure 1.  (a) Comparison between the simulated vertical distributions of the aerosol extinction coefficient over 20–60°N (contour map) and observations by Ozone 
Mapping and Profiler Suite Limb Profiler (OMPS-LP) for Pacific Northwest Event (PNE). The solid blue line with filled circles denotes the plume maximum height 
derived from OMPS-LP. The maximum height is defined as the highest altitude where the horizontal-mean extinction at 675 nm is greater than 0.3 and 0.5 Mm −1 for 
PNE and Australian New Year event (ANY), respectively. (b) Same as (a) but for ANY over 20–60°S; (c) Comparison between simulated stratospheric aerosol optical 
depth (sAOD) integrated from 12 to 30 km and observations by SAGE III/ISS for PNE. The green shading denotes standard deviation of the model ensembles. (d) Same 
as (c) but for ANY.
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The peak warming remained below 20 km where the main smoke plume was located. In contrast, the 2017 PNE 
induced a weaker global stratospheric warming of 0.2–0.6 K, which lasted about 4 months (Stocker et al., 2021). 
The warming from PNE was weaker mainly because the smoke injected by PNE was about 70% less than ANY.

In Figure 2b, we compare the observed and simulated stratospheric warming for the 2019–2020 ANY over the 
SH. In general, both the satellite observations (Bernath et al., 2022; Rieger et al., 2021; Santee et al., 2022) and 
model simulations by MAM3 (the present study) and CARMA (Yu et al., 2021) show that the SH mid-latitude 
stratosphere was warmed by about 1–2 K for a few months. The peak warming simulated by MAM3 was 0.5 K 
higher than that simulated by CARMA because the shortwave absorption of smoke organics was considered in 
MAM3 but ignored in CARMA (Table S2 in Supporting Information S1).

The smoke aerosols of the 2019–2020 ANY are composed of 2.5% BC and 97.5% OM according to a modeling 
study (Yu et al., 2021). To evaluate the relative contribution of OM and BC to the stratospheric warming, we 
conducted two sensitivity tests with the same smoke mass but containing 10% and 0% BC, respectively. The 

Figure 2.  (a) Simulated vertical distributions of the global mean temperature anomalies for the 2017 Pacific Northwest Event 
(PNE) and the 2019–2020 Australian New Year event (ANY) events. (b) Comparison of the simulated temperature anomalies 
due to ANY with satellite observations. The temperature anomalies from Yu et al. (2021), Rieger et al. (2021), and the 
current study are averaged between 30°S and 60°S. The temperature anomalies reported in Santee et al. (2022) are relative to 
the averaged temperature from 2005 to 2019 at 480 K (about 19 km) between 38°S and 54°S. Bernath et al. (2022) reported 
the temperature anomalies relative to 2005–2019 from 45°S to 60°S. The error bar represents the minimum to maximum 
anomalies for January and March 2020.
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10%-BC case showed stronger warming for the two pyroCb events at higher altitude (up to 28 km). The 0%-BC 
experiment suggested about 0.5 K temperature variations in 4 months (about 1/3–1/4 the temperature enhance-
ment of the 2.5%-BC experiment used as the result) for the 2019–2020 ANY (Figure S3 in Supporting Informa-
tion S1). With an offline Mie code, we found that the calculated absorption coefficient from OM in the smoke 
was comparable to that from BC at 550 nm with the refractive index (RI) used in MAM3 (Table S3 in Supporting 
Information S1). Our study suggests that both BC and the absorbing OM in the smoke in MAM3 contributed 
significantly to stratospheric warming.

3.3.  Effective Radiative Forcing

Stratospheric absorbing aerosols (e.g., BC and absorbing OM) warm the stratosphere but cool the surface 
(Ban-Weiss et al., 2012). The rapid adjustment of longwave radiation balances the shortwave radiation anomaly 
by smoke absorption. The ERF, a climate-relevant metric that considers rapid stratospheric adjustment (Larson 
& Portmann, 2016), was calculated to quantify the radiative impacts of pyroCb events. In this study, we define 
downward ERF as positive for both shortwave and longwave radiation. Thus, positive ERF values represent 
warming of the Earth system. We report the global mean ERF values averaged from 60°N to 60°S to avoid the 
simulated dynamically driven variability in the polar regions.

Statistically significant global mean clear-sky ERF was found in late 2017 and 2020 associated with the two 
major pyroCb events (Figure 3). For the 2017 PNE, the simulated global mean ERF reached a minimum of less 
than −0.2 W/m 2 within the first 2–3 months and decayed to zero by the end of 2017. In contrast, the ERF from the 

Figure 3.  Global-mean (60°N − 60°S) clear-sky ERF of pyroCb at (a) the top of the atmosphere (TOA), (b) 200 hPa, and (c) the surface. Panels (d–f) are the same 
as (a–c) but for the simulated ERF with the mass-equivalent sulfate injected at 18 km. The refractive index (RI) at 550 nm of smoke organic matter (OM) and sulfate 
aerosols in MAM3 is 1.53 + 0.0057i and 1.43 + 10 −8i (Table S2 in Supporting Information S1). Blue lines denote shortwave ERF. Orange lines denote longwave ERF. 
Green lines denote total ERF (shortwave + longwave). Shading denotes one standard deviation of 60-member ensemble runs from MAM3. Vertical dotted lines denote 
the injection time of the 2017 Pacific Northwest Event (PNE) and 2019–2020 Australian New Year event (ANY) events.



Geophysical Research Letters

LIU ET AL.

10.1029/2022GL100175

6 of 10

2019–2020 ANY event reached a minimum of about −0.4 W/m 2 at the TOA and at about −0.8 W/m 2 at 200 hPa 
and the surface. The simulated ERF of the ANY event lasted for more than 6 months in a broader latitudinal range 
of 10–60°S (Figure S4 in Supporting Information S1). As shown in Table S4 in Supporting Information S1, the 
simulated global mean ERF values for ANY are −0.17, −0.22, and −0.37 W/m 2 from the TOA, 200 hPa, and the 
surface, respectively. These values are about 4 times those of the 2017 PNE event in the first year.

The total ERF (shortwave + longwave) was dominated by the incoming shortwave RF, with rapid adjustment 
from the longwave RF (Figure 4). The simulated shortwave RF at the surface was significantly larger than the 
value at the TOA because the stratospheric smoke absorbed considerable incoming solar energy and persistently 
warmed the stratosphere (Yu et al., 2021). Consequently, less downward shortwave radiation reached 200 hPa 
and the surface. The warming stratosphere emitted more longwave RF both up to the TOA and down to 200 hPa 
compared to the smoke-free condition. The simulated longwave RF due to the ANY event was −0.04 ± 0.02 
and 0.17 ± 0.02 W/m 2 at the TOA and 200 hPa, respectively. At 200 hPa, the magnitude of the simulated long-
wave RF was about 50% of the shortwave RF (Figure 3 and Table S4 in Supporting Information S1). Our model 
simulations suggest that pyroCb smoke significantly warmed the stratosphere but had a cooling influence on the 
troposphere and surface (Figure 4).

The stratospheric smoke induced a convergence of energy in the first few months and then adjusted back to equi-
librium by longwave RF. As shown in Figure S5a in Supporting Information S1, the total RF at 200 hPa was about 
80%–200% more negative than the TOA RF for 1–3 months. Subsequently, the combined effects of shortwave 
and longwave RF resulted in comparable ERF at 200 hPa and TOA, although the shortwave RF is considerably 
more negative at 200 hPa compared to TOA. We further found a delayed peak time of 1–3 months in longwave 
ERF compared to shortwave ERF at the TOA and 200 hPa (Figure 3). This is consistent with the simulated 
temperature anomalies shown in Figure  2. The simulated delayed longwave ERF resulted from stratospheric 
temperature adjustments (Smith et al., 2018) in response to the absorbing smoke.

The complexity between MAM3 and CARMA for longwave RF led to an uncertainty of about 50% for ERF at 
the TOA, despite the overall consistency otherwise. MAM3 modeled more negative longwave RF at the TOA 

Figure 4.  Schematic diagram for the ERF of pyroCb smoke (left) and volcanic sulfate (right). The orange arrows indicate shortwave radiation, and the blue arrows 
denote longwave radiation. Black carbon (BC), organic matter (OM), and sulfate aerosols are denoted by different symbols. The numbers represent simulated 
annual-mean ERF at the top of the atmosphere (TOA), 200 hPa, and the surface for ANY smoke and mass-equivalent sulfate. The detailed ERF values are presented in 
Tables S4 and S6 in Supporting Information S1.
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compared to CARMA (Yu et al., 2021) from January to June 2020 (Figure S5 in Supporting Information S1). In 
contrast, CARMA simulated a positive longwave RF of 0.04 ± 0.04 W/m 2, which offset the negative shortwave 
RF at the TOA (Table S4 in Supporting Information  S1). MAM3 introduced more longwave cooling partly 
because it generated more stratospheric warming from smoke organics than CARMA (Figure 2). Li et al. (2021) 
suggested that the organics RI and mixing state could contribute to ±100% simulation uncertainties for the 
shortwave RF. Here we further complement the large diversity in longwave adjustments for ERF among climate 
models. Since the real part of the organics RI usually varies from 1.3 to 1.65 and the imaginary part from 0i to 
0.02i (Bond & Bergstrom, 2006; Saleh et al., 2014), such variability makes longwave radiation more complicated 
and difficult to quantify. Besides the RI, the aerosol microphysical properties (e.g., size distributions and mixing 
state) can affect simulated aerosol burden and lifetime. Our results suggest that better representations of the 
optical and microphysical properties of smoke aerosols in the models could improve the evaluation of climate 
responses from pyroCb.

3.4.  Comparison of Smoke Aerosols and Sulfate

The ERF of the 2017 PNE and the 2019–2020 ANY events calculated in this study is comparable to the reported 
ERF of moderate volcanic eruptions (G. A. Schmidt et al., 2014; A. Schmidt et al., 2018) (Table S5 in Support-
ing Information S1). The simulated ERF per mass injected is −0.13  and −0.19 W m −2 Tg −1 for PNE and ANY, 
respectively. The calculated ERF per unit mass injected for SO2 for the Kasatochi, Sarychev, and Nabro eruptions 
from 2008 to 2011 is smaller by a factor of about 1–2 than for the two pyroCb events. This comparison suggests 
that small emissions by wildfires may produce disproportionally larger climate effects than volcanos. However, 
the injection time, latitude, and altitude vary among the pyroCb and volcanic events, which makes it difficult to 
compare their ERF per mass directly. Furthermore, to understand the microphysical mechanisms that resulted in 
the ERF differences between the wildfire and volcanic emissions, we conducted “idealized” volcanic experiments 
that replaced the smoke aerosols with the same amount of sulfate injected (see Section 2).

As shown in Figure 3, the simulated annual-mean ERF for ANY smoke was over 1.7 times that of the idealized 
volcanic events. Consistently, the simulated sAOD anomaly of smoke at 675 nm was 70% higher than that of 
sulfate (Figure S6 in Supporting Information S1). This can be explained by the different RI between organics and 
sulfate in MAM3. Our offline Mie calculation confirmed that the higher real and imaginary parts of RI for BC 
and OM produced 70% higher aerosol extinction than sulfate aerosol at 550 nm (Table S3 in Supporting Infor-
mation S1). As shown in Figure 4, the shortwave ERF at the TOA was similar in magnitude between smoke and 
sulfate; however, the negative longwave adjustment of smoke from stratospheric warming contributed to a larger 
TOA ERF. At 200 hPa and the surface, the pyroCb smoke produced a negative ERF that was a factor of 2.2–3.7 
to volcanic sulfate (Table S6 in Supporting Information S1). This is because the stratospheric smoke absorbed 
a portion of the shortwave radiation, which arrived at 200 hPa and the surface in the idealized volcanic case 
(Figure 4). Another set of 20-member ensemble runs by CESM-CARMA also produced similar ERF for sulfate 
aerosol with consistent RI as the CESM-MAM3 model (Table S6 in Supporting Information S1).

4.  Conclusions
The two record-breaking pyroCb events (the 2017 PNE and the 2019–2020 ANY event) perturbed stratospheric 
chemistry and the radiative budget. We ran the CESM-MAM3 climate model to quantify the ERF of these two 
pyroCb events. Both the model and satellite observations show that sAOD was enhanced by a factor of about 1 
and three in the first 2 months of the PNE and ANY event, respectively. The plumes from the two pyroCb events 
self-lofted from 12 km to over 21 km in the first 3 months due to shortwave absorption by the smoke particles (de 
Laat et al., 2012). Consistent with satellite observations, we found that the ANY smoke warmed the stratosphere 
in the Southern Hemisphere midlatitudes by 1–1.5 K from 12 to 22 km for about 6 months. In the CESM-MAM3 
model, we found that both the organics and BC components of the smoke contributed to stratospheric warming 
with similar magnitude.

The simulated annual and global mean clear-sky ERF for the ANY event was −0.17 ± 0.02, −0.22 ± 0.02, and 
−0.37 ± 0.03 W/m 2 at the TOA, 200 hPa, and the surface, respectively. The simulated ERF of ANY was more 
negative than that of PNE by a factor of about 3. The stratospheric temperature adjustments from the warming 
stratosphere partly offset the shortwave cooling at 200 hPa but strengthened the cooling at the TOA. However, the 
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total ERF at the TOA simulated by the CARMA sectional aerosol model was about 50% lower than that simulated 
by the CESM-MAM3 model. Our study highlights the importance of longwave adjustments in ERF simulations 
for absorbing smoke, calling for more robust measurements and representations of the optical and microphysical 
properties for pyroCb smoke to enhance their climate predictability in the model.

To compare the ERF for wildfire smoke and volcanic sulfate directly, we conducted sensitivity simulations with 
sulfate injected instead of carbonaceous aerosols. We found that the simulated ERF of smoke was about 70% 
more negative than that of sulfate at the TOA, and about 120%–270% more negative at 200 hPa and the surface. 
A schematic diagram summarized the major similarities and differences in the radiative processes between smoke 
aerosols and sulfate (Figure 4). We found that the difference between the simulated ERF of smoke and sulfate 
resulted from the different RI used in the model as well as the rapid adjustment in response to stratospheric heat-
ing. Our study demonstrated that the stratospheric wildfire smoke significantly perturbed the climate radiative 
budget, which needs to be evaluated in climate assessments.

Data Availability Statement
Model simulations are publicly available at https://doi.org/10.5281/zenodo.7039968. OMPS-LP data are publicly 
available at https://ozoneaq.gsfc.nasa.gov/data/ozone/. SAGE III/ISS data are publicly available at https://doi.
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